Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes.

نویسندگان

  • Chun-Yuen Lo
  • Wei-Yu Chen
  • Cheng-Tai Chen
  • Yu-Chie Chen
چکیده

Iron oxide nanocomposites of magnetic particles coated with zirconia were used as affinity probes to selectively concentrate phosphopeptides from tryptic digests of alpha- and beta-caseins, milk, and egg white to exemplify the enrichment of phosphopeptides from complex samples. Phosphopeptides, in quantities sufficient for characterization by matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS), were enriched by the affinity probes within only 30 s. The affinity probe-target species conjugates were separated from the sample solution simply by applying an external magnetic field. The detection limit for tryptic digest of beta-casein using this approach is approximately 45 fmol. Furthermore, we combined this enrichment method with a rapid enzymatic digestion method, that is, microwave-assisted enzymatic digestion using magnetic particles as the microwave absorbers, to speed up the tryptic digest reactions. Thus, we alternatively enriched phosphoproteins on the zirconia-coated particles followed by mixing with trypsin and heated the mixture in a microwave oven for 1 min. The particles remaining in the mixture were used as affinity probes to selectively enrich phosphopeptides from the tryptic digestion product by pipetting, followed by characterization using MALDI MS. Using the bifunctional zirconia-coated magnetic particles as both the affinity probes and the microwave absorbers could greatly reduce the time for the purification and characterization of phosphopeptides from complex samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid enrichment of phosphopeptides and phosphoproteins from complex samples using magnetic particles coated with alumina as the concentrating probes for MALDI MS analysis.

In this study, we used nanocomposite magnetic particles coated with alumina as the affinity probes to selectively concentrate phosphorylated peptides and proteins from a low volume of sample solution. Tryptic digest products of phosphoproteins including alpha and beta-caseins, human protein phosphatase inhibitor 1, nonfat milk, egg white, and a cell lysate were used as the samples to demonstrat...

متن کامل

Affinity-based mass spectrometry using magnetic iron oxide particles as the matrix and concentrating probes for SALDI MS analysis of peptides and proteins.

Silane-immobilized magnetic iron oxide particles were used as the assisting material in surface-assisted laser desorption/ionization (SALDI) mass spectrometric analysis. This approach can be used to analyze small proteins and peptides. The upper detectable mass range is approximately 16 kDa. The detection limit for peptides is about 20 fmol. Silanized iron oxide particles with negatively charge...

متن کامل

Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides.

We herein demonstrate superparamagnetic Fe3O4 nanoparticles coated with nitrilotriacetic acid derivative (NTA) that can bind with different immobilized metal ions are capable of probing diverse target species. Immobilized Ni(II) on the surfaces of the NTA-magnetic nanoparticles have the capability of selectively trapping histidine (His)-tagged proteins such as a mutated streptopain tagged with ...

متن کامل

Design, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles

Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...

متن کامل

Synthesis of Silica-coated Iron Oxide Nanoparticles: Preventing Aggregation Without Using Additives or Seed Pretreatment

The Stober process is frequently used to prepare silica-coated iron oxide nanoparticles. This is usually achieved by seeding a reaction mixture consisting of water, ethanol and a catalyst with iron oxide particles and adding a silica precursor. The hydrolysis and condensation of precursor monomers results in the deposition of a silica layer on iron oxide particles. However, this process is acco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of proteome research

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2007